首页> 外文OA文献 >Characterizing and Analyzing Diffusion Tensor Images by Learning their Underlying Manifold Structure
【2h】

Characterizing and Analyzing Diffusion Tensor Images by Learning their Underlying Manifold Structure

机译:通过学习扩散张量图像的基础流形结构来表征和分析扩散张量图像

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The growing importance of diffusion tensor imaging (DTI) in studying the white matter architecture in normal and pathologic states necessitates the development of tools for comprehensive analysis of diffusion tensor data. Operations such as multivariate statistical analysis and hypothesis testing, interpolation and filtering, must now be performed on tensor data, and must overcome challenges introduced by the non-linearity and high dimensionality of the tensors. In this paper, we present a novel approach to performing these computations by modeling the underlying manifold structure of the tensors, using a combination of two manifold learning techniques, isometric mapping (ISOMAP) and local tangent space alignment (LTSA). While ISOMAP identifies the dimensionality of the manifold of the tensors and embeds the tensors into a linear space, facilitating statistical computations therein, operations like interpolation and filtering, integral to the process of normalization, require the reconstruction of the tensor in the tensor domain. To obtain this reverse mapping from the linear space to the tensor domain, i.e. to the domain of the original tensor data, we use LTSA. The modeling of the underlying manifold structure renders our approach better applicable to tensor data than existing methods that may not always be able to capture the non-linearity present in the tensors under consideration. In various simulations with known ground truth, we demonstrate the effectiveness of our framework based on ISOMAP and LTSA in performing a comprehensive analysis of DTI data.
机译:扩散张量成像(DTI)在研究正常状态和病理状态下的白质结构中的重要性日益增长,因此有必要开发用于全面分析扩散张量数据的工具。现在必须对张量数据执行诸如多元统计分析和假设检验,内插和过滤之类的操作,并且必须克服张量的非线性和高维性带来的挑战。在本文中,我们提出了一种通过对张量的基础流形结构进行建模来执行这些计算的新颖方法,该方法使用两种流形学习技术(等距映射(ISOMAP)和局部切线空间对齐(LTSA))的组合。虽然ISOMAP识别张量流形的维数并将张量嵌入线性空间中,但为了方便其中的统计计算,归一化过程不可或缺的插值和滤波等操作需要在张量域中重建张量。为了获得从线性空间到张量域(即原始张量数据的域)的这种反向映射,我们使用LTSA。与可能无法始终捕获所考虑的张量中存在的非线性的现有方法相比,底层歧管结构的建模使我们的方法更好地适用于张量数据。在具有已知基本事实的各种模拟中,我们证明了基于ISOMAP和LTSA的框架在执行DTI数据的全面分析中的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号